

ARCHITECTURAL Ρ RTFOLIO 0 FRANKIE WINTERS

CONTACT INFORMATION https://frankie.winters.design frankie@winters.design 503-956-4585

Oberammergau Lightbox. Inspired by the architecture of the Bavarian village. Designed and fabricated in 2020. 58in x 24in.

CONTENTS

COTTAGE CLUSTER MAJOR RENOVATION --DAYLIGHT BASEMENT PARKSIDE LIVE/WORK TILLIKUM BRIDGE HA COMMUNITY STORMW OXBOW PARK READING

	8
ADU	12
RETIRE	14
NDRAIL DETAIL	17
ATER SECTION	18
G LEAF	19

3

COTTAGE CLUSTER

Designed to explore the advantages of the cottage cluster provisions of the Portland's Residential Infill Project, the Kenton Cluster places 12 **super-insulated tiny homes** on a 100'x200' lot that would typically only fit four single-family residences.

ADA DUPLEX | ≈390 SF ea.

TINY HOME | ≈300 SF

2 BEDROOM COTTAGE | ≈570 SF

SITE PLAN

Incorporating Four ADA Homes, Four Tiny Homes, and Four Two-Story, Two Bedroom Cottages

COMMUNITY AREA

Gardening beds, outdoor eating and gathering areas, bike and package storage.

(-

STORMWATER STRATEGY

Along the street, infiltration swales double as privacy buffers for each cottage.

ACCESSIBILITY FEATURES

The Residential Infill Project's Cottage Cluster provisions require that 1/3 of the units in a cottage cluster be ADA-accessible. This project includes four units with wheelchair-accessible kitchens and baths, wide doorways and clearances.

An accessible kitchen, with roll-under sink and rollunder prep areas, as well as casework with large toekick clearance to facilitate use by an occupant in a wheelchair.

<u>An accessible bathroom</u> including a roll-in shower equipped with fold-down seats, grab bars, and adequate turning radius for wheelchair users.

TRIPLE PANE WINDOWS

Highly efficient triple-pane windows provide excellent thermal insulation and sound control, while thermally-broken frames prevent condensation, improved insulation.

COTTAGE ENVELOPES

Super-insulated walls, thoughtfully designed roof, floor, and foundation assemblies, and triple-pane windows create extreme energy-efficient building envelope for the cottages.

EAVE AND ROOF DETAILS

A raised-plate wall design reduced thermal bridging at the roof-wall intersection.

TYPICAL EXTERIOR WALL SECTION

1/2" Gypsum Wallboard

INTERIOR

EXTERIOR

- Staggered Stud Structural Assembly w/ continuous Mineral Wool Insulation
- 1/2" CDX Plywood Sheathing
- Water-Resistant Barrier
- Continuous 2" Rigid Foam Insulation w/ Z-Girts
- Drainage Plane
- Cedar Siding

FLOOR AND FOUNDATION DETAILS

An insulated stem wall along with below-slab rigid insulation thermally isolate the floor and foundation from the grade.

PERFORMANCE AUDIT

To complete the project, I compared the thermal performance of the envelope to a version with only code-minimum version.

Based on heating cost and greenhouse emissions, the design **performs roughly twice as well as the baseline**. However, due to the small size of the cottages, it would likely be many **years before the initial investment in the envelope would be recouped**.

Opportunities for improvement to the design include revising the eaves for additional window shading and meticulous air sealing with passive-house style windows and doors.

Southern Glazing Solar Gain

Month	Winter BTUs	Summer BTUs	\$
January	4,700		\$
February	6,500		
March	8,900		\$
April		7,600	\$
May		6,900	
June		5,800	
July		7,700	
August		8,900	
September		7,600	
October	8,200		
November	4,700		
December	3,700		
Total per sqft	36,700	44,500	
x 53 sqft Glazing	1.9 M	2.4 M	

"KENTON KERCHIEF" PERFORMANCE

Heat Losses	Per Design				
	UA*	BTUs/Hour	BTUs/Year		
Valls	34.2	2053.6	3.7M		
Ceilings	6.2	370.4	0.7M		
Windows	34.5	2068.5	3.7M		
Floors	0.7	39.6	0.1M		
Slab (Perimeter)	5.1	305.6	0.6M		
nfiltration	53.2	3193.0	5.8M		
	Subtotals	8030.7	14.5 M		
Heat Gains					
nternal Gain*		-905.6	-7.9 M		
Other (Solar) Gain	(enter all the digit	s: 1600000)	1.6 M		
	Offset Totals	7125.1	-6.3 M		

CODE MINIMUM PERFORMANCE

Heat Losses	Per Design			
	UA*	BTUs/Hour		
Walls	60.9	3655.0		
Ceilings	12.1	726.0		
Windows	37.3	2236.2		
Floors	0.7	39.6		
Slab (Perimeter)	5.9	352.6		
Infiltration	53.2	3193.0		
	Subtotals	10202.5		
Heat Gains				
Internal Gain*		-905.6		
Other (Solar) Gain	(enter all the digits	(enter all the digits: 1600000)		
	Offset Totals	9296.9		

Fuel	Per Unit (Kwh, Gallon, Therms)		Per Design (Yearly)			Fuel	
	Price	Heating Value*	CO2 (lbs/BTU)	HVAC Efficiency	CO2 (lbs)	Cost to Heat	
PGE	\$0.21	3412	0.0000468	350	194	\$255.44	PGE

uel	Per Unit (Kwh, Gallon, Therms)			Per Design (Yearly)		
	Price	Heating Value*	CO2 (Ibs/BTU)	HVAC Efficiency	CO2 (lbs)	Cost to Heat
GE	\$0.21	3412	0.0000468	200	432	\$567.91

Heating Cost per Year

Carbon Emissions per Year

MAJOR RENOVATION

This project proposes a **complete renovation** of an 80-year old two story home on 49th Avenue, **reclaiming 800 sq. ft. of living space from unfinished and under-height basement.**

By consolidating three disparate staircases with a central vertical circulation pattern, and excavating the basement to provide adequate headroom for first-class living area, enough space to expanding the kitchen create an additional bedroom, bathroom, and laundry room.

While the internal changes are sweeping, **the existing shell is kept largely intact**, preserving the character of the home and its fit among its peers in the surrounding neighborhood.

CENTRAL VERTICAL CIRCULATION

After a few rounds of hand sketching, figuring out the flow of the floor plan in tandem with replacing steep and narrow staircases, I landed on a new stair layout using a central column of wrap-around halfflight stairs.

This makes a much more intuitive and efficient connection between the new living area in the basement and the heart of the home. A basement excavation is no small project, and this change addresses real space-planning shortcoming of the exisiting plan with a solution that aligns with one of the overall goals of the project, which is to make the new living area feel like an integrated part of the home.

EXISTING CONDITION

PROPOSED

MODERNIZED FLOOR PLAN

The new floor plan introduces a circular flow, **doubles the size of the kitchen**, relocates an undersized bedroom to the basement, increases storage, provides wider hallways and fewer awkward spaces.

DAYLIGHT BASEMENT ADU

An unfinished basement in Beaverton is converted into an ADU/AirBNB unit.

Roughly half the space is allocated to the new living areas, with a walk-in closet including laundry, a full-size bathroom and generous kitchen.

A minimal addition in keeping with the style of the home provides a secure and separate entry to the space.

Existing Stairs

KITCHEN PLANS & RENDERINGS

SW MARICARA ST

PARKSIDE LIVE/WORK/RETIRE

Each unit is adapted with a specialized focus.

The North unit features a wheelchair-accessible first floor and and two bedroom suites on the second floor.

The South unit accommodates a live/work lifestyle with an office featuring a separate entry on the first floor and private living quarters on the second floor.

STYLE $\mathcal E$ DESIGN FEATURES

Both units have a combination stucco and vertical cementitious cladding. Standing-seam metal shed roof with a low slope provides a shade for clerestory glazing and lends modern compliment to arch-top window, stucco molding and Italianate brackets.

The South unit has a framed floor over a crawlspace while the North unit has slab-on-grade floor to facilitate wheelchair access.

Thanks for your time.

CONTACT INFORMATION

Frankie Winters 503-956-4585 frankie@winters.design

Church of the Mother of God Lightbox. Inspired by the Church of Our Lady before Týn in the Czech Republic. Designed and fabricated in 2020. 58in x 24in.

